Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 145: 104711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062456

RESUMO

Locusta migratoria manilensis is a major agricultural pest that causes severe direct and indirect damage to several crops. Thus, to provide a theoretical foundation for pest control, the role of CrebA in the reproduction and immune regulation of L. migratoria was investigated. CrebA is a bZIP transcription factor that critically regulates intracellular protein secretion. In this study, CrebA was widely expressed in the brain, fat body, integument, midgut, and reproductive tissues of different maturity stages of adult locusts, especially in the female fat body. RNA interfering (RNAi)-mediated silencing of CrebA inhibited locusts ovarian development, and key reproduction gene expressions, Vgs, VgRs, Chico, and JHAMT were downregulated. After the locusts were injected with Micrococcus luteus or Escherichia coli, M. luteus activated lysozyme expression, while the E. coli activated both phenol oxidase cascade and lysozyme expression. Furthermore, both bacteria stimulated the upregulation of the antimicrobial peptide genes DEF3 and DEF4. However, CrebA silencing is fatal to locusts infection with E. coli, with a mortality rate of up to 96.3%, and resulted in a significant decrease in the expression of DEF3 and DEF4 and changes in the activities of phenol oxidase and lysozyme of locusts infected by bacteria. Collectively, CrebA may be involved in diverse biological processes, including reproduction and immunity. CrebA inhibited locusts reproduction by regulating JH signaling pathway and inhibits the expression of immune genes TLR6, IMD, and AMPs. These results demonstrate CrebA seems to play a crucial role in reproduction and innate immunity.


Assuntos
Locusta migratoria , RNA , Feminino , Animais , RNA/metabolismo , Locusta migratoria/genética , Interferência de RNA , Muramidase/metabolismo , Escherichia coli/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Reprodução , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Biomed Res Int ; 2020: 6215435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420357

RESUMO

BACKGROUND: The association studies of killer cell immunoglobulin-like receptors (KIRs) with the occurrence of myelodysplastic syndromes (MDS) are limited worldwide; this study investigated the genetic risk/protective factors of MDS in KIR and human leucocyte antigen (HLA) systems to gain a better understanding of the role played by KIR and their cognate HLA ligands in MDS pathogenesis. METHODS: We genotyped a total number of 77 patients with MDS from Chinese Southern Han and 745 healthy controls for the KIR loci and HLA class I. The carrier frequencies of KIR genes, KIR genotypes, class I HLA ligands, and KIR-HLA combinations were calculated by direct counting. The effect of individual KIR genes and HLA ligands on MDS risk was evaluated by logistic regression analyses using SAS 9.2 software. RESULTS: We found that neither the KIR genes nor the KIR genotypes were associated with the occurrence of MDS. However, we observed that the frequencies for the strong inhibitory ligand HLA-Bw4 as well as KIR3DL1-HLA-Bw4 combination were significantly higher in healthy controls than those in the MDS patient group, respectively (73.42% vs. 62.34%, P = 0.038; 70.87% vs. 59.74%, P = 0.043). CONCLUSION: Our results showed that HLA-Bw4 ligand and KIR3DL1-HLA-Bw4 combination could confer a protective effect against MDS in Chinese Southern Han.


Assuntos
Genótipo , Antígenos HLA-B/genética , Síndromes Mielodisplásicas/genética , Receptores KIR3DL1/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/etnologia , China/etnologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...